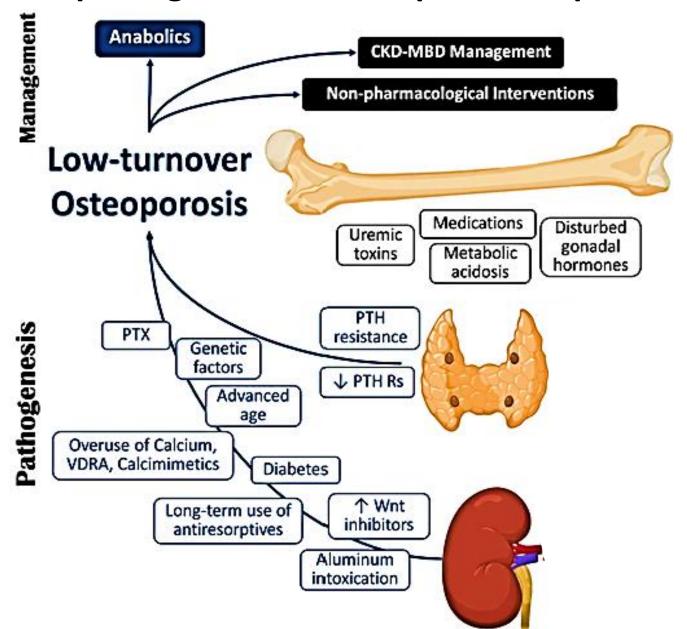


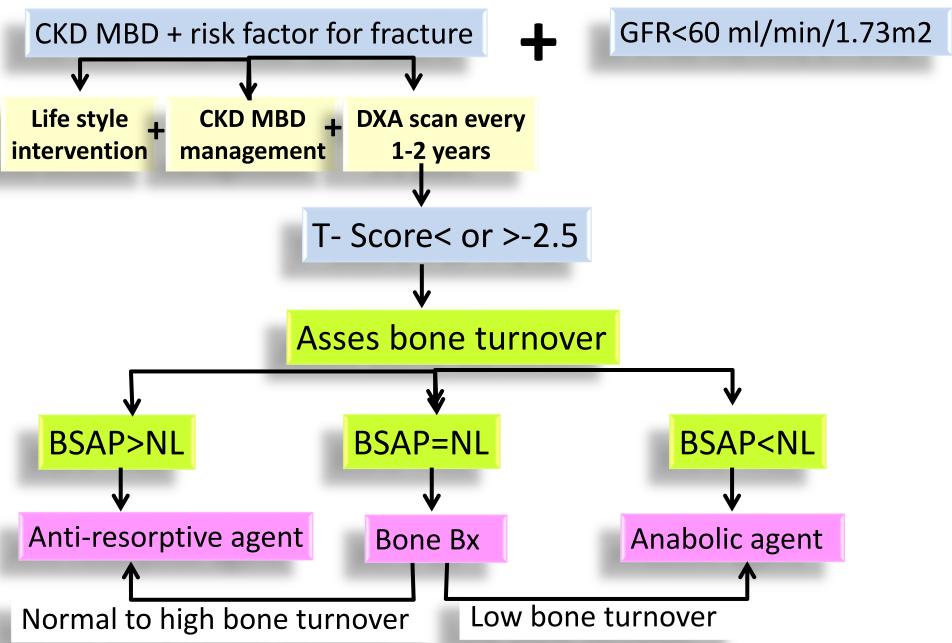
IN THE NAME OF GOD

Anti-Absorptive and Anabolizing agents in Renal Osteodystrophy

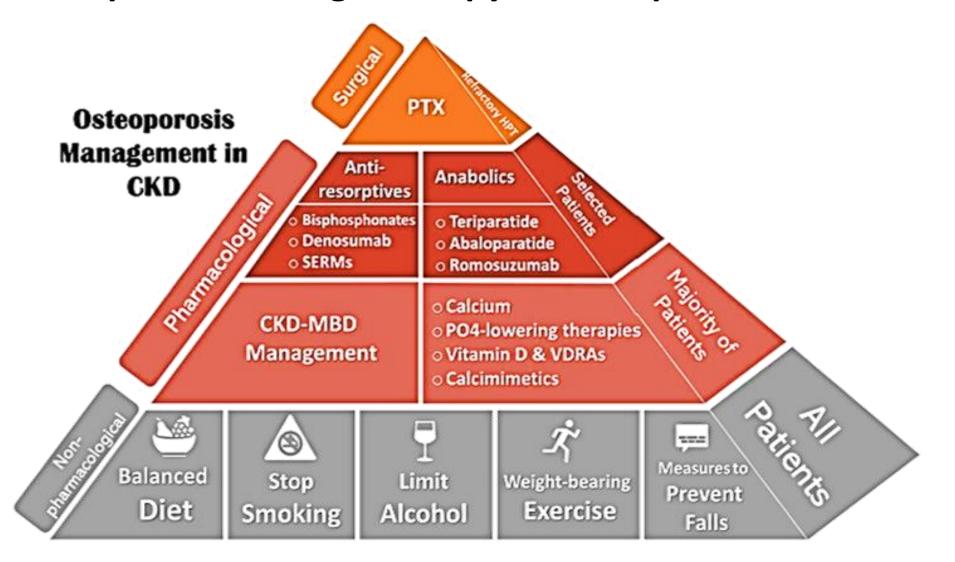
gani, Professor of Nephro



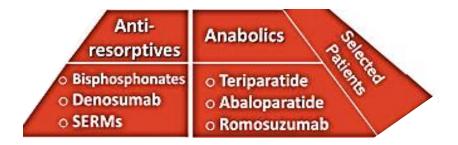
Associations of bone-related, CKD-modified blood parameters with bone formation, mineralization, and resorption


	Direction of change in bone			
Parameter	Formation	Mineralization	Resorption	
Metabolic acidosis		ļ		
High PTH		Normal	† †	
High FGF23	?	?	?	
High osteocalcin	(†)	Normal		
High osteoprotegerin			Į.	
High sclerostin			-	

The pathogenesis of osteoporosis in patients with CKD


Osteoporosis International ·33; 2259–2274, (2022)

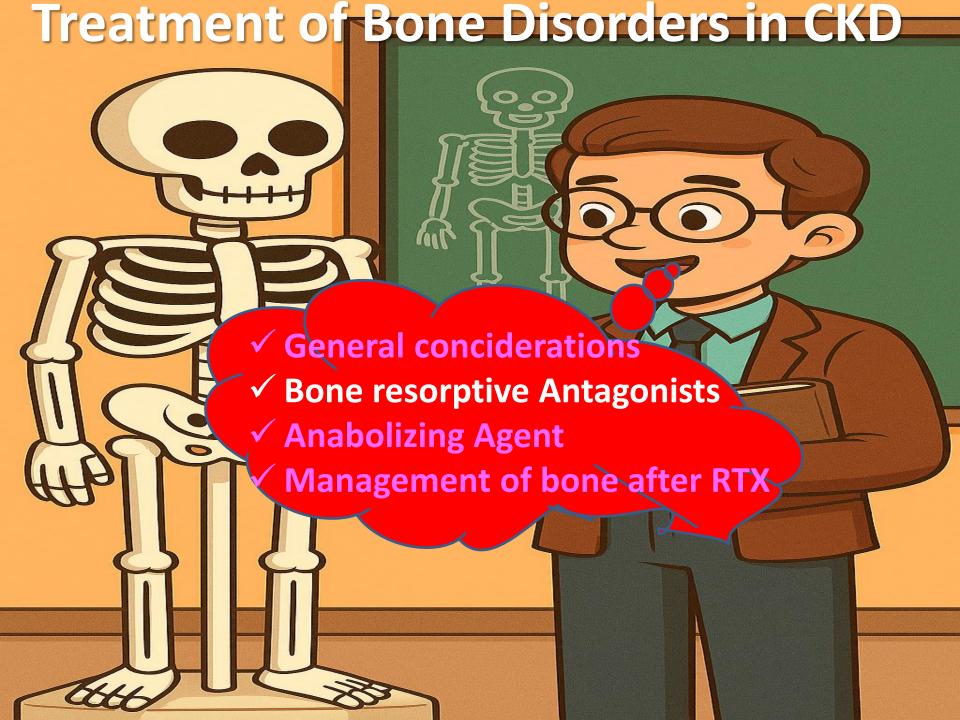
Treatment of BMD in CKD based on DEXA and BSAP



Clin J Am Soc Nephrol 13: 962–969, 2018

Osteoporosis management pyramid in patients with CKD

Osteoporosis management pyramid in patients with CKD



Anti-resorptive drugs

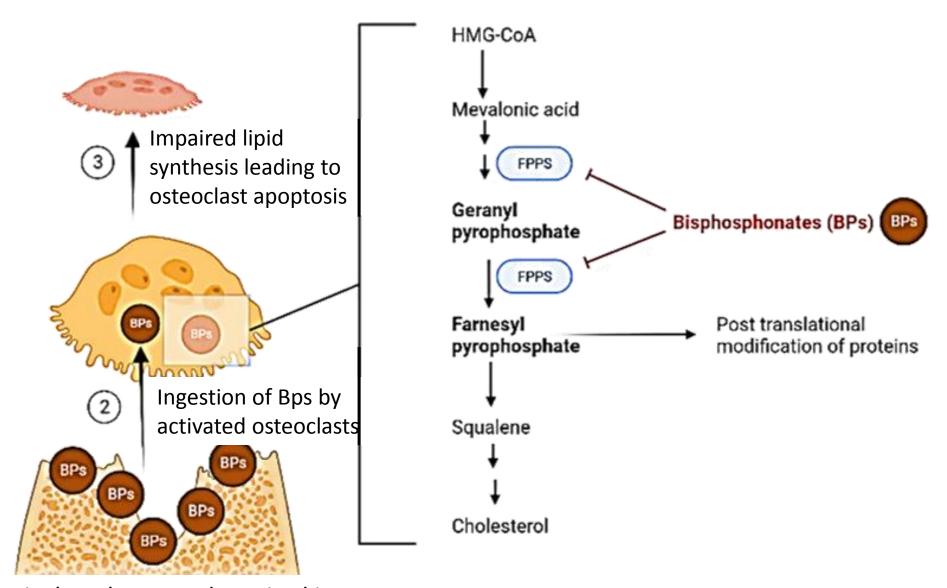
Anabolic agents

Diagnosis and Management of Osteoporosis in Advanced Kidney Disease: A Review

Charles Ginsberg and Joachim H. Ix

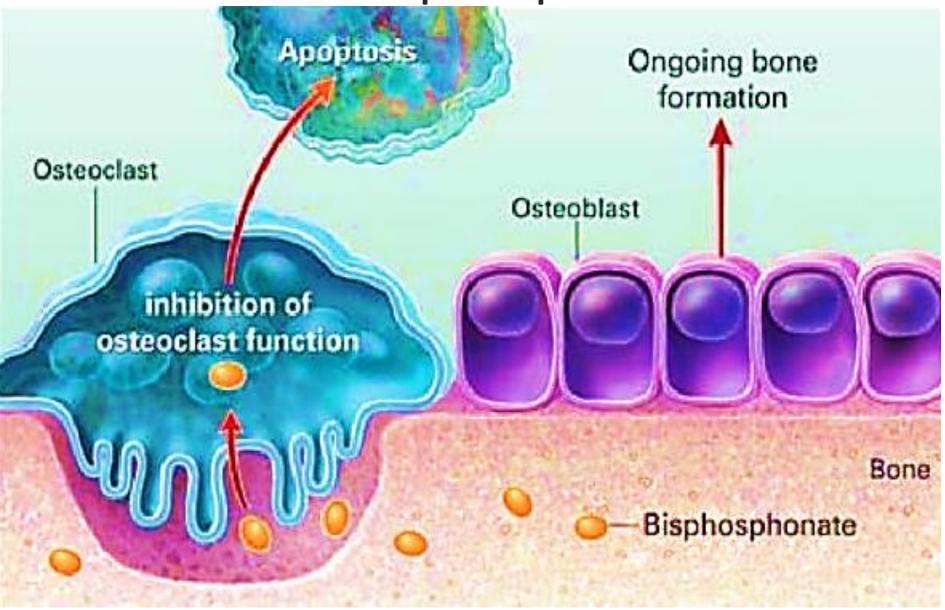
Drug	Trials in eGFR < 45 (No. of Patients)	Trials in Dialysis Patients (No. of Patients)	Suggested Dosing Options	Side Effects	Efficacy
Antiresorptive					
Bisphosphonates	Yes (59-581)	Yes (ongoing)	(1) Oral alendronate35 mg, weekly(2) IV pamidronate 60 mg, every other month	Hypocalcemia, AKI, eGFR decline, osteonecrosis	Benefits seen in CKD3; data lacking in CKD4 and dialysis
RANK ligand inhibitor	Yes (55)	Yes (8-12)	SC denosumab, 60 mg, ×1	Hypocalcemia (severe), rebound osteoclast activity	Efficacy seen in dialysis in observational studies
Hormonal	Yes (51-970)	Yes (50)	Oral raloxifene, 60 mg, daily	Minimal adverse events, thrombosis risk (theoretical)	Efficacy seen in RCTs in CKD and dialysis
Anabolic					
PTH analogues	Yes (168-736)	Yes (7)	(1) SC teriparatide, 20 µg, daily(2) SC abaloparatide, 80 µg, daily	Hypercalcemia, nausea, URI	Efficacy in CKD, unclear in dialysis
Mixed					
Antisclerostin antibody	Yes (430)	Yes (12)	Romosozumab, 210 mg, monthly	CVD, hypocalcemia, arthralgias	Efficacy in CKD, unclear in dialysis

Drug	Trials in eGFR < 45 (No. of Patients)	Trials in Dialysis Patients (No. of Patients)	Suggested Dosing Options	Side Effects	Efficacy
Antiresorptive					
Bisphosphonates	Yes (59-581)	Yes (ongoing)	(1) Oral alendronate35 mg, weekly(2) IV pamidronate 60 mg, every other month	Hypocalcemia, AKI, eGFR decline, osteonecrosis	Benefits seen in CKD3; data lacking in CKD4 and dialysis
RANK ligand inhibitor	Yes (55)	Yes (8-12)	SC denosumab, 60 mg, ×1	Hypocalcemia (severe), rebound osteoclast activity	Efficacy seen in dialysis in observational studies
Hormonal	Yes (51-970)	Yes (50)	Oral raloxifene, 60 mg, daily	Minimal adverse events, thrombosis risk (theoretical)	Efficacy seen in RCTs in CKD and dialysis
Anabolic					
PTH analogues	Yes (168-736)	Yes (7)	(1) SC teriparatide, 20 µg, daily(2) SC abaloparatide, 80 µg, daily	Hypercalcemia, nausea, URI	Efficacy in CKD, unclear in dialysis
Mixed					
Antisclerostin antibody	Yes (430)	Yes (12)	Romosozumab, 210 mg, monthly	CVD, hypocalcemia, arthralgias	Efficacy in CKD, unclear in dialysis

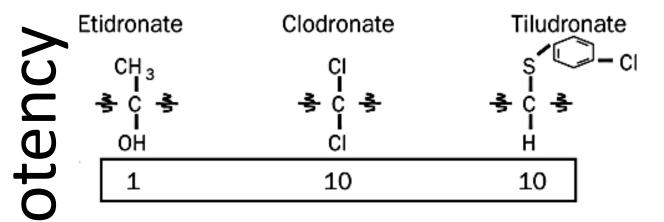

Drug	Trials in eGFR < 45 (No. of Patients)	Trials in Dialysis Patients (No. of Patients)	Suggested Dosing Options	Side Effects	Efficacy
Antiresorptive					
Bisphosphonates	Yes (59-581)	Yes (ongoing)	(1) Oral alendronate 35 mg, weekly (2) IV pamidronate 60 mg, every other month	Hypocalcemia, AKI, eGFR decline, osteonecrosis	Benefits seen in CKD3; data lacking in CKD4 and dialysis
RANK ligand inhibitor	Yes (55)	Yes (8-12)	SC denosumab, 60 mg, ×1	Hypocalcemia (severe), rebound osteoclast activity	Efficacy seen in dialysis in observational studies
Hormonal	Yes (51-970)	Yes (50)	Oral raloxifene, 60 mg, daily	Minimal adverse events, thrombosis risk (theoretical)	Efficacy seen in RCTs in CKD and dialysis
Anabolic					
PTH analogues	Yes (168-736)	Yes (7)	(1) SC teriparatide, 20 µg, daily(2) SC abaloparatide, 80 µg, daily	Hypercalcemia, nausea, URI	Efficacy in CKD, unclear in dialysis
Mixed					
Antisclerostin antibody	Yes (430)	Yes (12)	Romosozumab, 210 mg, monthly	CVD, hypocalcemia, arthralgias	Efficacy in CKD, unclear in dialysis

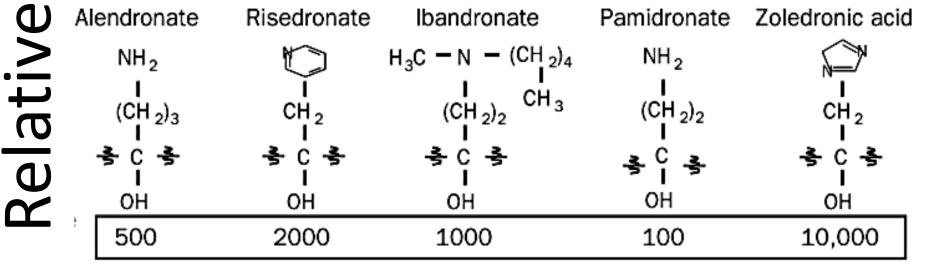
Mechanism of Bisphosphonates

□Bisphosphonates inhibit hydroxyapatite breakdown → effectively suppressing bone resorption.


☐ Bisphosphonates limit both osteoblast and osteocyte apoptosis.

Mechanism of Action of Bisphosphonates




Bisphosphonates deposited in hydroxyapatite crystals of bone

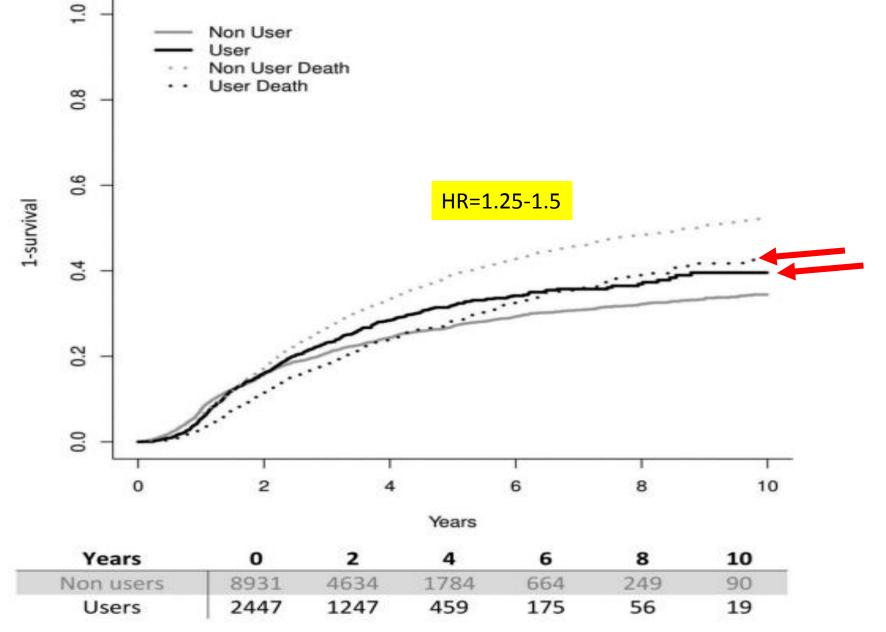
Action of bisphosphonates

Bisphosphonate structures and approximate relative potencies for osteoclast inhibition

Mayo Clin Proc. 2008 September; 83(9): 1032–1045

Relative Risk Reduction of Fractures after 3 Years of Oral Bisphosphonate Treatment

	Bisphosphonate				
Type of fracture	Risedronate	Alendronate	Ibandronate		
Vertebral	41	47	62		
Hip	40	51	NS		
Nonvertebral	39	20	NS		


Maximum suppression of bone resorption: within 3 months

Safety of Oral Bisphosphonates in Moderate-to-Severe Chronic Kidney Disease: A Binational Cohort Analysis

Danielle E Robinson,^{1†} M Sanni Ali,^{1,2,3†} Natalia Pallares,⁴ Cristian Tebé,^{4,5} Leena Elhussein,¹
Bo Abrahamsen,^{6,7,8} Nigel K Arden,⁹ Yoav Ben-Shlomo,¹⁰ Fergus J Caskey,^{10,11} Cyrus Cooper,^{6,12}
Daniel Dedman,¹³ Antonella Delmestri,¹ Andrew Judge,^{1,12,14} María José Pérez-Sáez,¹⁵ Julio Pascual,¹⁵
Xavier Nogues,^{16,17} Adolfo Diez-Perez,¹⁶ Victoria Y Strauss,¹ M Kassim Javaid,^{6‡} and
Daniel Prieto-Alhambra^{1,18‡}

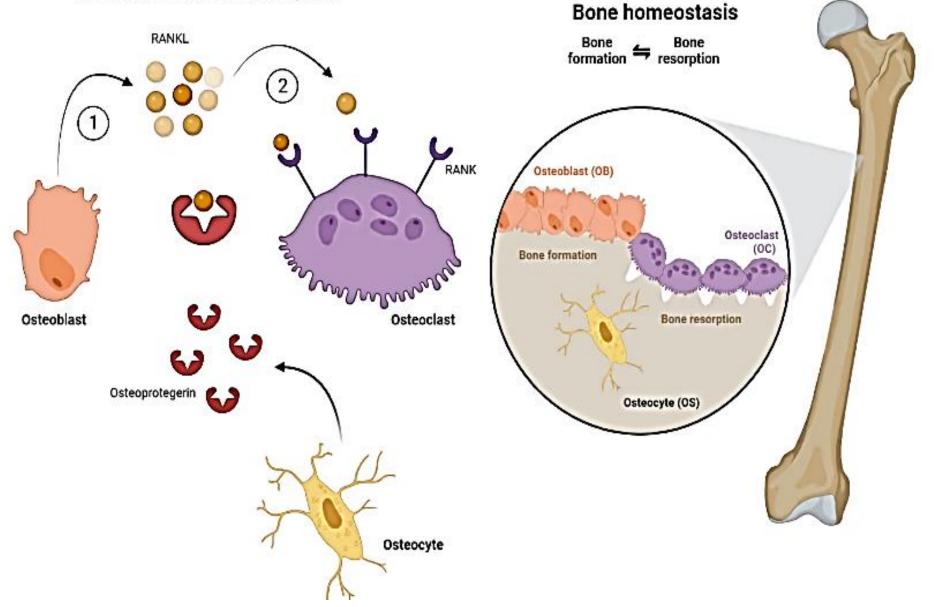
Bisphosphonate use was associated with greater risk of CKD progression

ROBINSON ET AL., Journal of Bone and Mineral Research, 2021

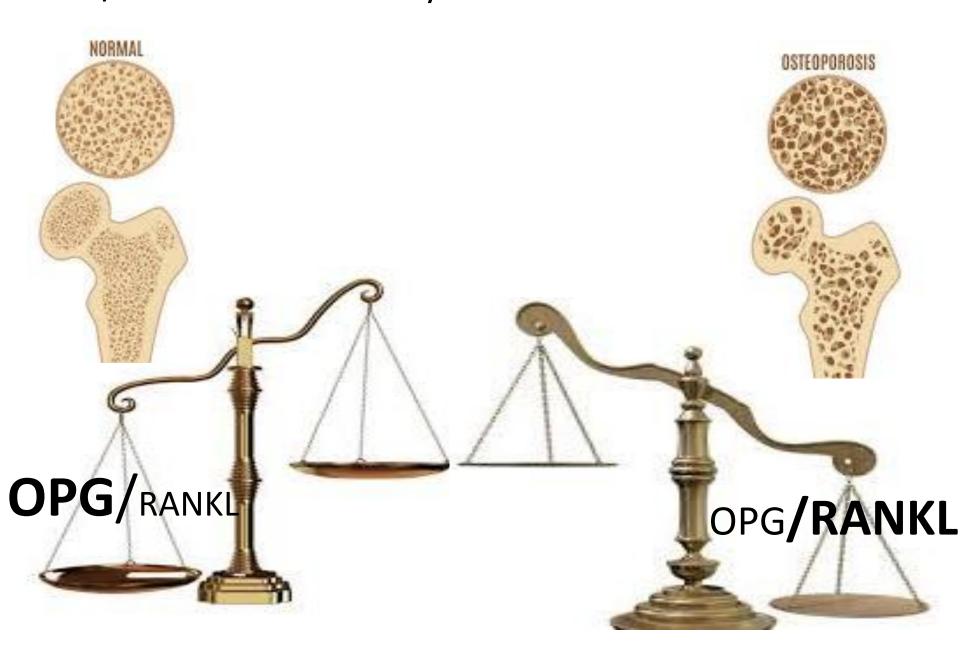
Drug	Trials in eGFR < 45 (No. of Patients)	Trials in Dialysis Patients (No. of Patients)	Suggested Dosing Options	Side Effects	Efficacy
Antiresorptive					
Bisphosphonates	Yes (59-581)	Yes (ongoing)	(1) Oral alendronate35 mg, weekly(2) IV pamidronate 60mg, every other month	Hypocalcemia, AKI, eGFR decline, osteonecrosis	Benefits seen in CKD3; data lacking in CKD4 and dialysis
RANK ligand inhibitor	Yes (55)	Yes (8-12)	SC denosumab, 60 mg, ×1	Hypocalcemia (severe), rebound osteoclast activity	Efficacy seen in dialysis in observational studies
Hormonal	Yes (51-970)	Yes (50)	Oral raloxifene, 60 mg, daily	Minimal adverse events, thrombosis risk (theoretical)	Efficacy seen in RCTs in CKD and dialysis
Anabolic					
PTH analogues	Yes (168-736)	Yes (7)	(1) SC teriparatide, 20 µg, daily(2) SC abaloparatide, 80 µg, daily	Hypercalcemia, nausea, URI	Efficacy in CKD, unclear in dialysis
Mixed					
Antisclerostin antibody	Yes (430)	Yes (12)	Romosozumab, 210 mg, monthly	CVD, hypocalcemia, arthralgias	Efficacy in CKD, unclear in dialysis

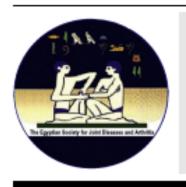
Osteoclast Stimulation Osteoclast Inhibition **RANKL** inhibitors to suppress **RANK OPG** 1-**RANKL** Denosumab osteoclastogenesis Aptamer Osteoclast Osteoclast **Precursors Precursors** Osteoblasts Mature Mature Osteoclast Osteoclast Osteoclast Stimulation Osteoclast Inhibition

CURRENT THERAPEUTIC STRATEGIES TARGETING RANKL


- ☐ Recombinant human osteoprotegerin.
- ■Strontium compounds.
- □human RANKL monoclonal antibodies.

THE POTENTIAL PROBLEMS RELATED TO THE ANTI-RANKL MONOCLONAL ANTIBODY, DENOSUMAB


- ❖ Infection: Since RANKL is also abundantly expressed by dendritic cells and activated T lymphocytes, the antagonistic effect caused by denosumab could affect the immune system and result in individual risk of adverse events.
- ❖ skin eczema (3%),
- **❖** <u>flatulence</u> (2.2%),
- **☆** cellulitis (0.3%)
- **❖** osteonecrosis of the jaw 1.7%
- Hypocalcemia up to 14% especially in CKD (specially in the Older GFR, Lowe basal serum ca level)


mechanism of action of Osteoprotegrin

Mediators of bone resorption

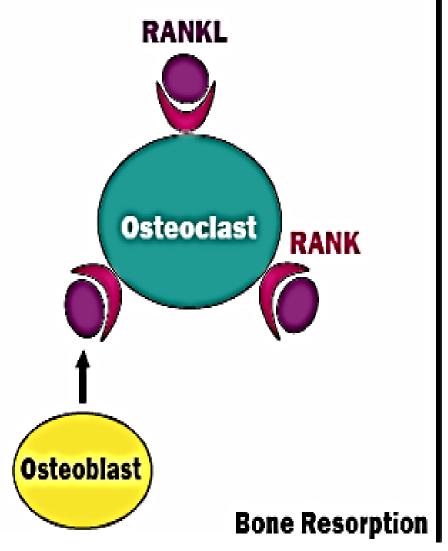
OPG/RANKL ratio is closely related to osteoclast formation

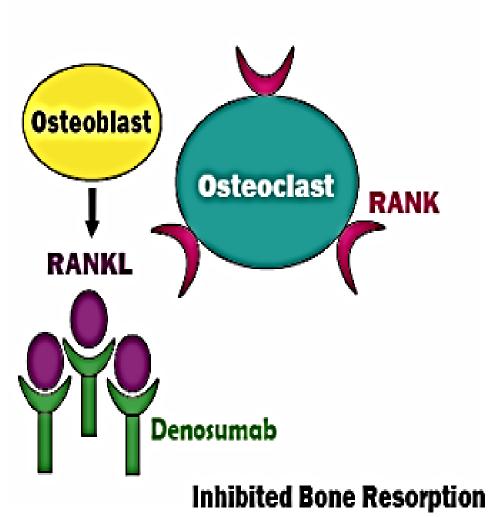
Egyptian Society for Joint Diseases and Arthritis

The Egyptian Rheumatologist

www.rheumatology.eg.net www.sciencedirect.com

ORIGINAL ARTICLE


Osteoprotegerin (OPG) and Matrix Gla protein (MGP) in rheumatoid arthritis patients: Relation to disease activity

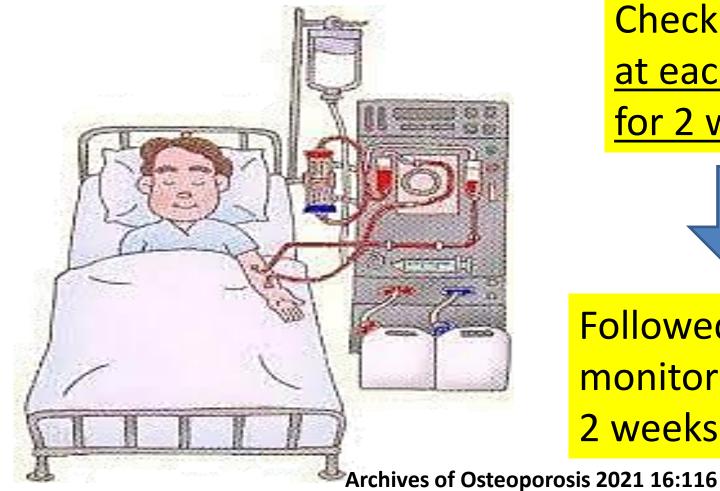


Amir Ghorbanihaghjo ^a, Mehrzad Hajialilo ^b, Maryam Shahidi ^b, Alireza khabazi ^c, Susan Kolahi ^c, Mohammad Reza Jafari Nakhjavani ^a, Sina Raeisi ^a, Hassan Argani ^a, Nadereh Rashtchizadeh ^{a,*}

Conclusion: The significant elevation of the OPG level in RA patients

The mechanism of action of denosumab in the treatment of osteoporosis.

human RANKL monoclonal antibodies characteristics (Denosumab)

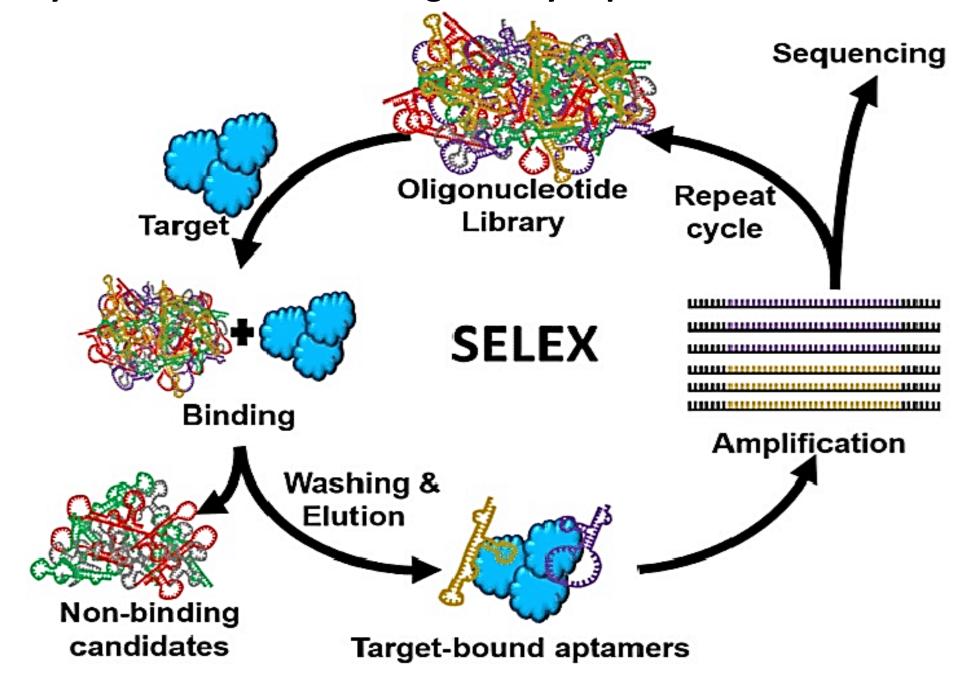

- It is a human monoclonal IgG2 antibody
- ❖Binds with RANKL selectively and displays high affinity → neutralizes the activity of human RANKL to inhibit bone resorption
- Decreases Bone resorption markers
- It is recommended that secondary hyperparathyroidism be corrected before administrating of anti-resorptive medication

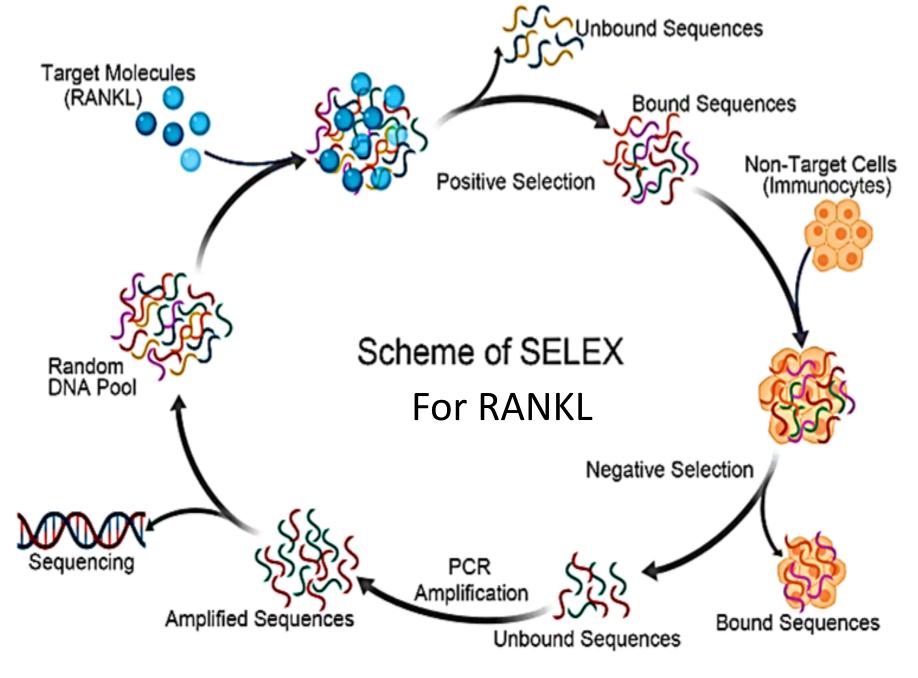
REVIEW ARTICLE

Denosumab in chronic kidney disease: a narrative review of treatment

efficacy and safety

Check Ca and Po4
at each HD session
for 2 weeks.



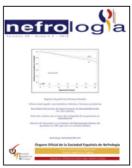

Followed by weekly monitoring for 2 weeks thereafter

APTAMER: A PROMISING THERAPEUTIC STRATEGY FOR OSTEOPOROSIS (Artificial Ab.)


- □ Aptamers are small single-stranded oligonucleotides → Specifically bind with target molecules.
- Aptamers are screened from oligonucleotide libraries, which generally consists of a fixed sequence at both ends of the oligonucleotide chain and a random sequence with a length of 20–60 bp in the middle, using a gold-standard methodology named SELEX (Systematic Evolution of Ligands by Exponential Enrichment)

Systematic Evolution of Ligands by Exponential Enrichment

Therapy. Front. Cell Dev. Biol. 8:325, May; 2020



Advantages of Aptamers over antibodies

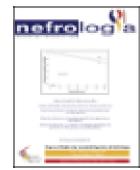
☐ Greater stability: Aptamers are more resistant to temperature and
pH variations.
☐ Cost-effective synthesis : Aptamers are less expensive to produce.
☐ Reproducibility: Aptamers abolish batch-to-batch variations,
ensuring consistent quality.
☐ Flexibility of modification: Aptamers can be easily modified to
improve binding or stability.
□ Non-immunogenicity: They are less likely to trigger undesirable
immune responses.
☐ Miniature characteristic: they are smaller than antibodies and can
be used for intracellular diagnosis and treatment

Original article

Osteoporosis management in patients with chronic kidney disease (ERCOS Study): A challenge in nephrological care

Treatment for osteoporosis and prescribing physician according to specialty

Variable	Descriptive statistics
Treatment for osteoporosis, n (%)	
Yes	98 (60.1%)
No	65 (39.9%)
Years since initiation of first osteoporosis treatment, median (P25,P75)	4.02 (1.66-6.54)
Specialist who initiated treatment for osteoporosis, n (%)	
Rheumatology	46 (46.9%)
Family doctor	10 (10.2%)
Internal medicine	23 (23.5%)
Gynecology	1 (1.02%)
Nephrology	13 (13.3%)
Other ^a	5 (5.10%)


First antiosteoporotic treatment according to stage of CKD

Stages of CKD	Stage: 3 N=56	Stage: 4-5 N=23	Stage: 5D N=19
Treatment with bisphosphonates, n (%)	29 (51.8%)	12 (52.2%)	4 (21.1%)
Oral	22 (75.9%)	11 (91.7%)	4 (100%)
Intravenous (zoledronic acid)	7 (24.1%)	1 (8.33%)	0 (0.00%)
Oral bisphosphonates, n (%)			
Alendronate	10 (45.5%)	5 (45.5%)	2 (50.0%)
Risedronate	10 (45.5%)	5 (45.5%)	2 (50.0%)
Ibandronate	2 (9.09%)	1 (9.09%)	0 (0.00%)
Treatment with denosumab, n (%):	24 (42.9%)	8 (34.8%)	13 (68.4%)
Treatment with teriparatide, n (%):	2 (3.57%)	1 (4.35%)	2 (10.5%)
Treatment with SERM, n (%):	1 (1.79%)	2 (8.70%)	0 (0.00%)

CKD, chronic kidney disease; SERM, selective estrogen receptor modulator.

Letter to the Editor

Optimizing osteoporosis management in CKD patients

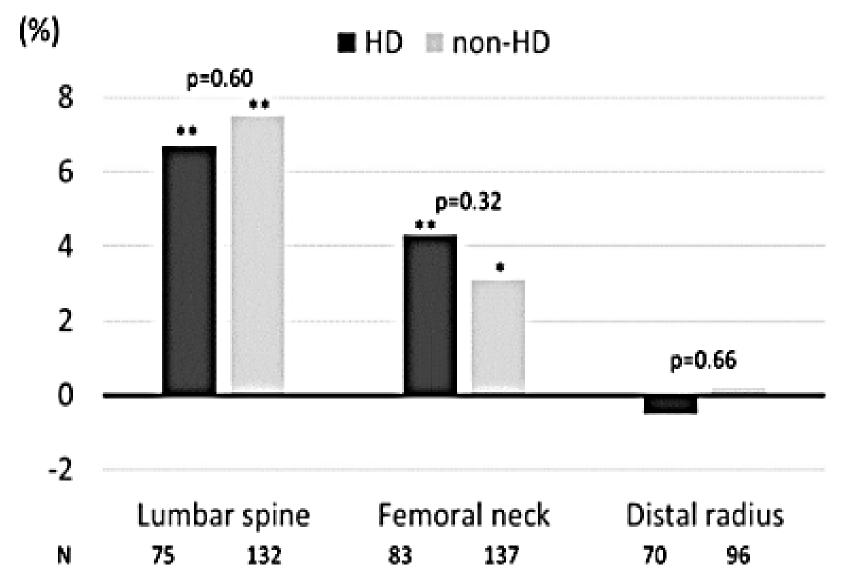
Comparison of Anti-resorptive agents in different stages CKD

Stage of GFR	Denosumab treatment (Duration of 6months to 4 years)	Bisphosphonate (Duration of treatment for 6 months to 2 years)
GFR<60	Increased Lumbar BMD (upto12%), and increased Hip BMD (upto 6%)	Increased Spinal and Hip BMD upto 5 %
GFR<30	Increased Lumbar BMD (upto9%), and increased Hip BMD (upto 3.8%) over 4 years	Increased Spinal and Hip BMD upto 5 %
GFR<15	Increased Lumbar BMD (upto6%), and no increase in Hip BMD	Contraindicated (at least in high doses)

n e f r o l o g i a. 2 0 2 5;4 5(4):344-350

Anti resorptive drugs

	Bisphosphonate	Denosumab
Secondary mineralization	+	++
Increased BMD	+	++
Bone structure	Preserved with Bisphosphonate	Increased more cortical bone



natureresearch

Denosumab for dialysis patients with osteoporosis: A cohort study

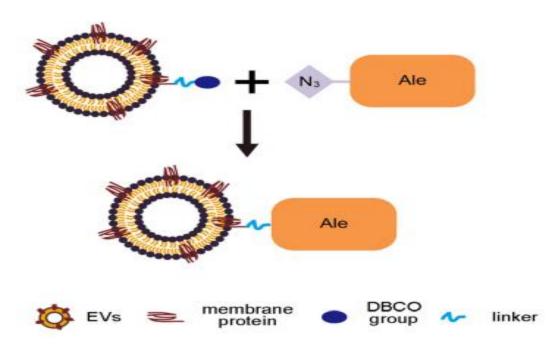
Kyohei Kunizawa^{1,2}, Rikako Hiramatsu¹, Junichi Hoshino^{1,3,4*}, Hiroki Mizuno³, Yuko Ozawa³, Akinari Sekine³, Masahiro Kawada³, Keiichi Sumida¹, Eiko Hasegawa³, Masayuki Yamanouchi¹, Noriko Hayami¹, Tatsuya Suwabe¹, Naoki Sawa¹, Yoshifumi Ubara^{1,4} & Kenmei Takaichi^{1,3,4}

Annual change in bone mineral density in HD and non-HD patients after Denosumab.

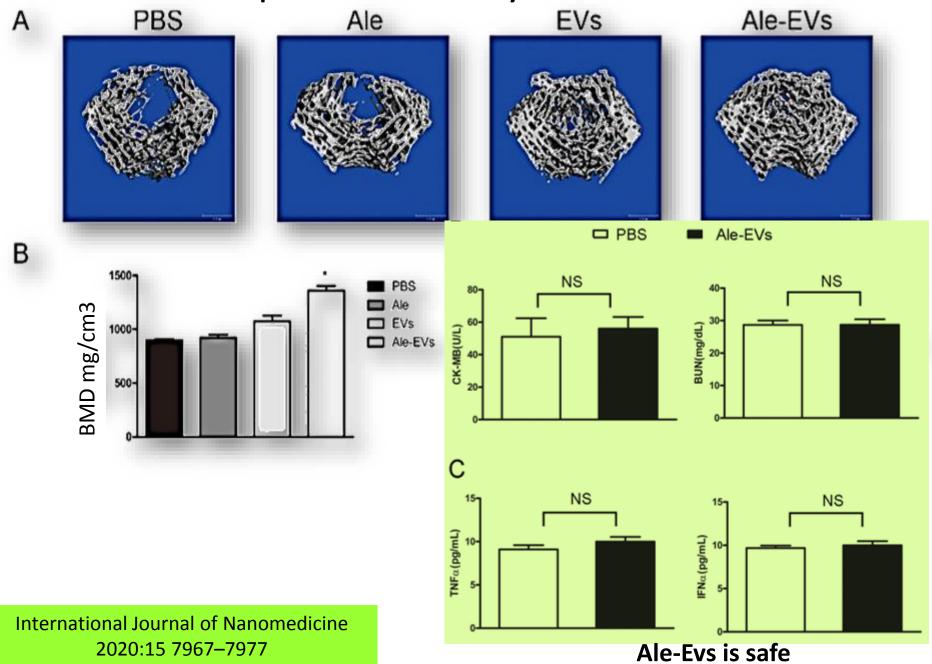
Scientific Reports (2020) 10:2496

Conclusion

- Denosumab is effective for the treatment of osteoporosis in HD patients.
- Increasing BMD to a degree similar to that seen in patients not on dialysis.
- Careful monitoring of serum calcium is necessary in HD patients due to the high risk of hypocalcemia.
- Baseline serum TRACP5b could be a potential predictor of hypocalcemia in these patients after denosumab injection.
- Denosumab may be the first- or second-line of choice for management of osteoporosis in the HD patients.



open access to scientific and medical research



ORIGINAL RESEARCH

Bone-Targeted Extracellular Vesicles from Mesenchymal Stem Cells for Osteoporosis Therapy

Anti-osteoporosis efficacy of Ale-EVs in vivo.

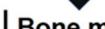
Osteoporosis Drugs in Advanced CKD

Drug	Trials in eGFR < 45 (No. of Patients)	Trials in Dialysis Patients (No. of Patients)	Suggested Dosing Options	Side Effects	Efficacy
Antiresorptive					
Bisphosphonates	Yes (59-581)	Yes (ongoing)	(1) Oral alendronate35 mg, weekly(2) IV pamidronate 60 mg, every other month	Hypocalcemia, AKI, eGFR decline, osteonecrosis	Benefits seen in CKD3; data lacking in CKD4 and dialysis
RANK ligand inhibitor	Yes (55)	Yes (8-12)	SC denosumab, 60 mg, ×1	Hypocalcemia (severe), rebound osteoclast activity	Efficacy seen in dialysis in observational studies
Hormonal	Yes (51-970)	Yes (50)	Oral raloxifene, 60 mg, daily	Minimal adverse events, thrombosis risk (theoretical)	Efficacy seen in RCTs in CKD and dialysis
Anabolic					
PTH analogues	Yes (168-736)	Yes (7)	(1) SC teriparatide, 20 µg, daily(2) SC abaloparatide, 80 µg, daily	Hypercalcemia, nausea, URI	Efficacy in CKD, unclear in dialysis
Mixed					
Antisclerostin antibody	Yes (430)	Yes (12)	Romosozumab, 210 mg, monthly	CVD, hypocalcemia, arthralgias	Efficacy in CKD, unclear in dialysis

Estrogen deficiency

RANKL activation

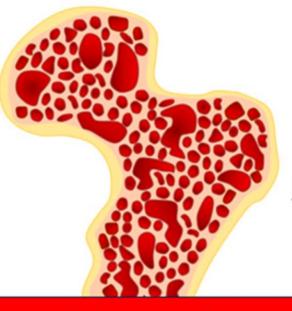
↓OPG production


↓ Wnt/β-catenin signaling

T-cells activation

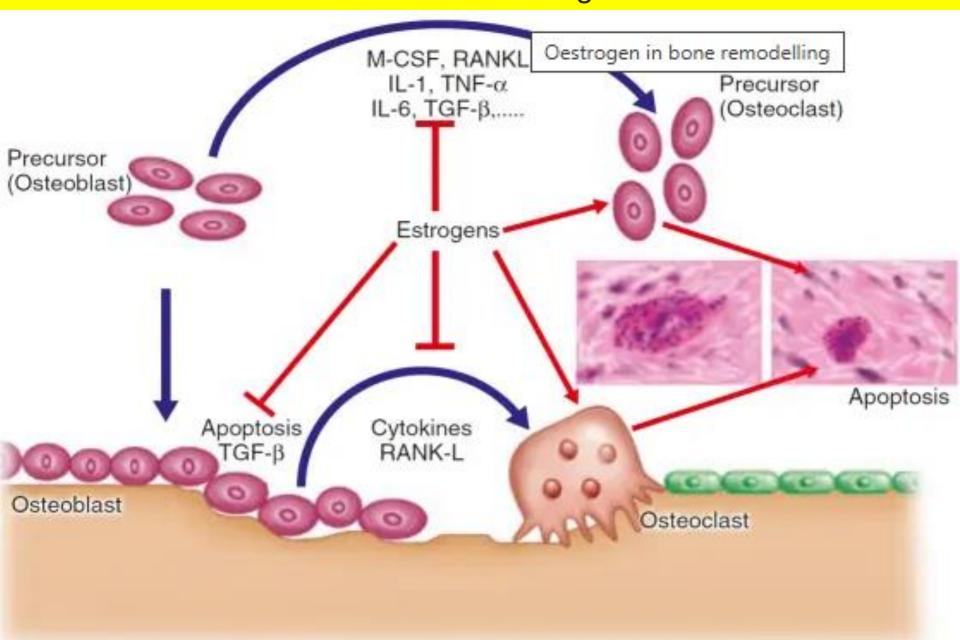
Inflammatory cytokines secretion Diffentitiation of BMSCs to adypocytes

Differentiation of dendritic cells to OC



↓ Bone matrix proteins Apoptosis of osteoblasts

Bone resorption



↓ Mineralization of bone matrix

Osteoporosis

Cytokine production under the control of estrogen in bone and bone remodeling

SERMS: Chemical groups

Triphenylethylenes

Tamoxifen

Droloxifene

Idoxifene

Clomiphene

Toremifene

Benzotiophenes

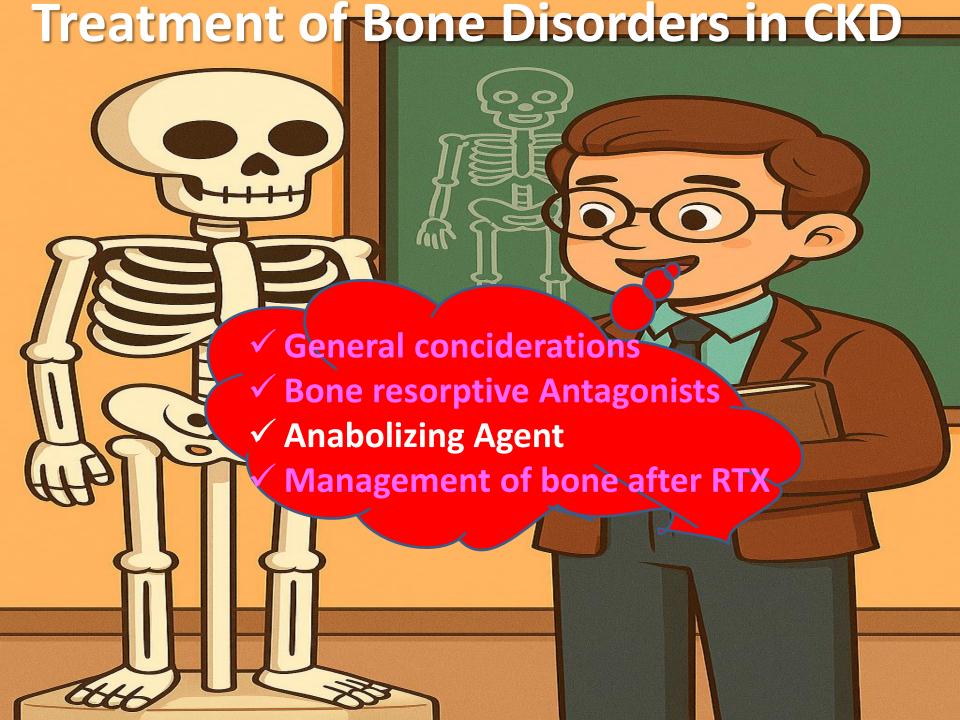
Raloxifene

Arzoxifene

Tetrahydronafthylenes

Lasofoxifene

Nafoxidine


Indoles

Bazedoxifene

Benzopyrans

EM-800

Levormeloxifene

Osteoporosis Drugs in Advanced CKD

Drug	Trials in eGFR < 45 (No. of Patients)	Trials in Dialysis Patients (No. of Patients)	Suggested Dosing Options	Side Effects	Efficacy	
Antiresorptive						
Bisphosphonates	Yes (59-581)	Yes (ongoing)	(1) Oral alendronate Hypocalcemia, A 35 mg, weekly eGFR decline, (2) IV pamidronate 60 osteonecrosis mg, every other month		, Benefits seen in CKD3; data lacking i CKD4 and dialysis	
RANK ligand inhibitor	Yes (55)	Yes (8-12)	SC denosumab, 60 mg, ×1	Hypocalcemia (severe), rebound osteoclast activity	Efficacy seen in dialysis in observational studies	
Hormonal	Yes (51-970)	Yes (50)	Oral raloxifene, 60 Minimal adverse events, thrombosis risk (theoretical)		Efficacy seen in RCTs in CKD and dialysis	
Anabolic						
PTH analogues	Yes (168-736)	Yes (7)	(1) SC teriparatide, 20 µg, daily(2) SC abaloparatide, 80 µg, daily	Hypercalcemia, nausea, URI	Efficacy in CKD, unclear in dialysis	
Mixed						
Antisclerostin antibody	Yes (430)	Yes (12)	Romosozumab, 210 mg, monthly	CVD, hypocalcemia, arthralgias	Efficacy in CKD, unclear in dialysis	

Tyne **Efficacy** Indications Price Range Agant

Anti-

Resorptive

Anabolic

Anabolic

Zoledronic

Acid

Teriparatide

Abaloparatide

Comparison of Anti-Resorptive and Anabolic Agents for Renal Osteodystrophy Treatment

Increases

BMD, reduces

fracture risk

Increases

BMD

significantly,

reduces

fractures

Increases

BMD,

favorable

safety profile

Agent	Туре	Efficacy	Indications	Price Range	Side Effects
Denosumab	Anti- Resorptive	Increases BMD, reduces fracture risk	CKD patients with high fracture risk	\$1,500 - \$2,000/year	Hypocalcemia, osteonecrosis of jaw

CKD patients,

especially

with

osteoporosis

Osteoporosis

in CKD

patients

Osteoporosis

in CKD

patients

\$800 -

\$1,200/year

\$4,000 -

\$6,000/year

\$4,000 -

\$6,000/year

Renal

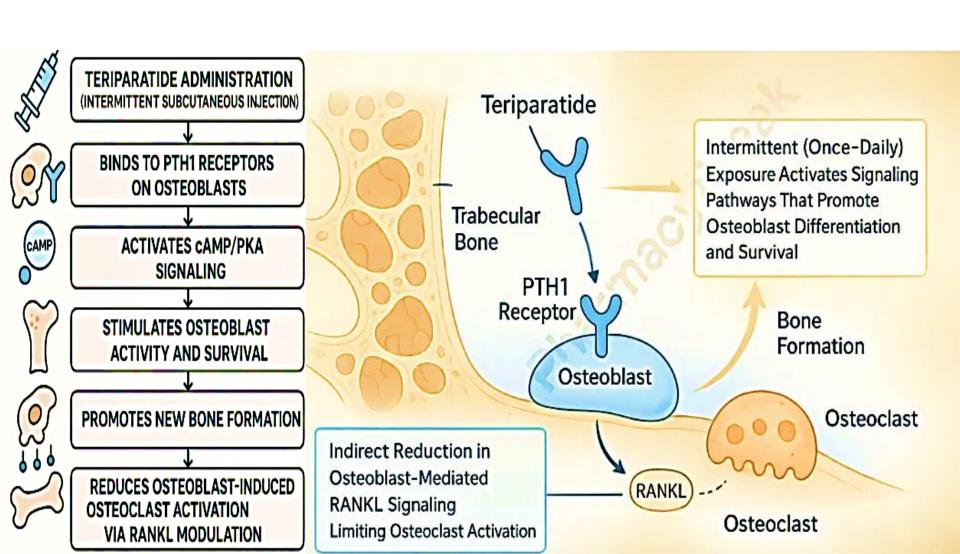
impairment,

gastrointestinal

issues

Hypercalcemia,

injection site


reactions

Hypercalcemia,

injection site

reactions

Teriparatide mechanism of action

Concerns to Teriparatide injection

- Indications: 1-Osteoprotic CKD patients with iPTH concentrations < 2 times + Low BSAP.</p>
- 2-Patient with worsening osteoporosis after PTX.
- Contraindications: 1-Patients with hypercalcemia,
- 2-patients with previous skeletal radiotherapy,
- 3-patients with Bone malignancies, or metastases

Concerns to Teriparatide injection

- Indications: 1-Osteoprotic CKD patients with iPTH concentrations < 2 times + Low BSAP.</p>
- 2-Patient with worsening osteoporosis after PTX.
- Contraindications: 1-Patients with hypercalcemia,
- 2-patients with previous skeletal radiotherapy,
- 3-patients with Bone malignancies, or metastases
- ❖Administration should not exceed 24 months due to theoretical osteosarcoma risk→BMD thereafter
- After discontinuation of teriparatide, denosumab or bisphosphonate is necessary.
- Transient hypotension has been reported in 36% of hemodialysis patients.

Anabolic compounds approved for treatment of osteoporosis in CKD						
Property Teriparatide Abaloparatide Romosozumab						
Regulatory approval	2002	2017	2019			

PTH relat.

Increases

Increases

20 mcg SC /day

Self-injection

24 months

Yes

Yes

No

Agonist

PTHrP(1-34)

increases

increases

PTH rec. agonist

80 mcg SC daily

Self-injection

24 months

lifetime

Yes

Yes

No

Humanized Monoc. Ab

Anti-sclerostin

210 mg SC monthly

By professionals

12 months (may

repeat)

No

No

Yes

Increases

Decreases

Regulatory approval	2002
Molecule	PTH(1-34)

Mechanism

Dose

Bone formation

Bone resorption

Administration

Duration limit

Rat osteosarcoma

Avoid in patients at high

risk for osteosarcoma

Avoid in patients with

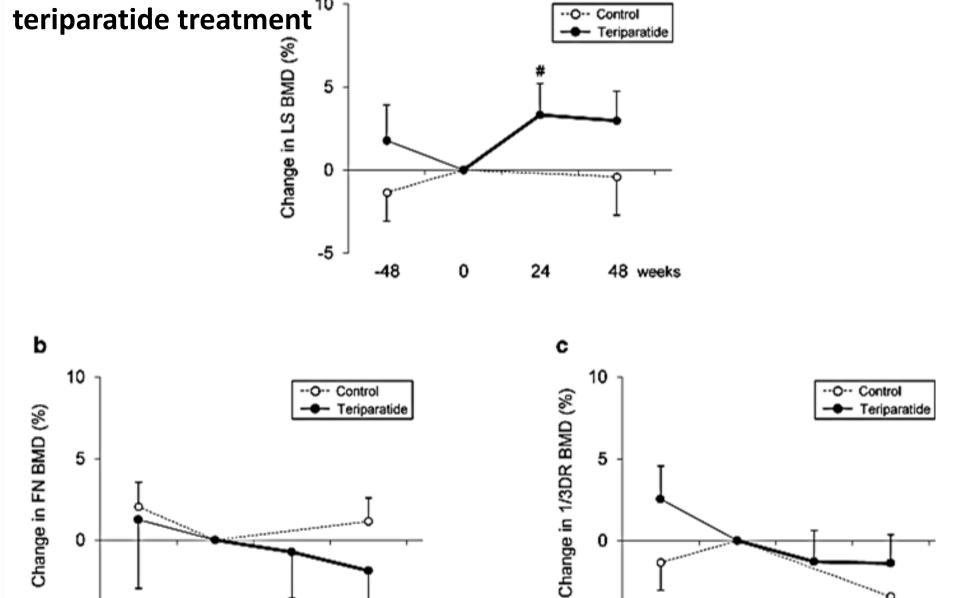
MI/stroke in the past year

Limitations of anabolic therapy

- □ Inconvenience of dosing (daily self-injections with teriparatide and abaloparatide; monthly injections by a healthcare professional with romosozumab)
 □ Lack of availability in some regions.
- ☐ High cost.

Differences between Abaloparatide and Teriparatide

	Abaloparatide	Teriparatide
Anabolic efficacy	+++	+
Risk of hypercalcemia	+	+++



ORIGINAL ARTICLE

Once-weekly teriparatide in hemodialysis patients with hypoparathyroidism and low bone mass: a prospective study

K. Sumida ^{1,2,3} • Y. Ubara ^{1,2,3} • J. Hoshino ^{1,2} • K. Mise ¹ • N. Hayami ^{1,2} • T. Suwabe ^{1,2} • M. Kawada ² • A. Imafuku ² • R. Hiramatsu ² • E. Hasegawa ² • M. Yamanouchi ² • N. Sawa ² • K. Takaichi ^{1,2,3}

Percent BMD changes from baseline before and after once weekly

Osteoporos Int (2016) 27:1441–1450

24

-5

24

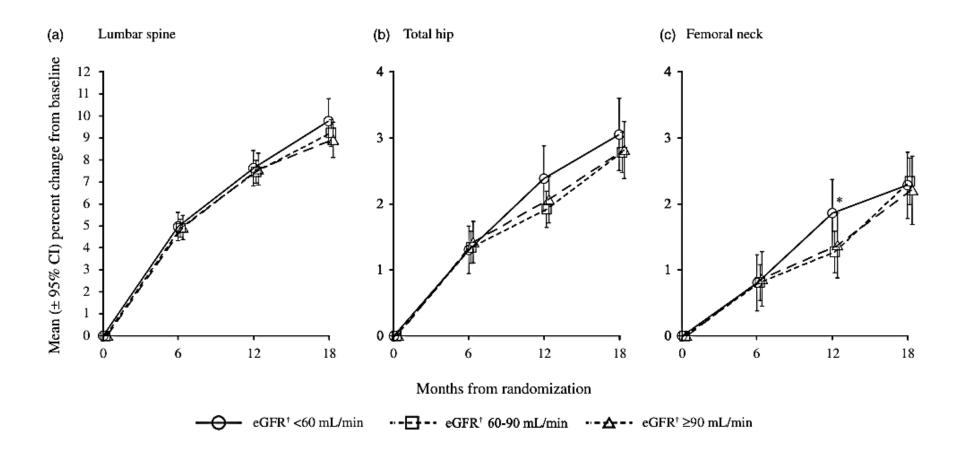
12 $R^2 = 0.59$ P = 0.00612M % Change in LS BMD 5 우. so. φ, 30 5 25 10 20 15 Baseline BAP (µg/L)

Table 3 Summary of treatment-emergent adverse events

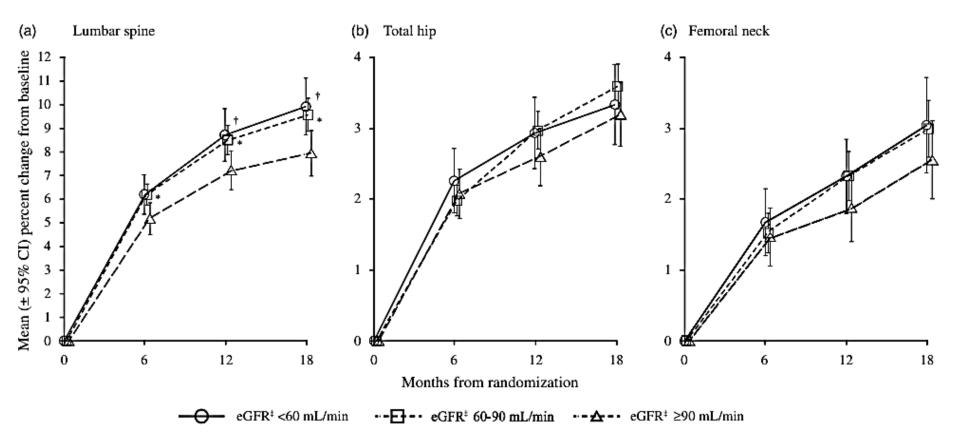
Adverse event	n (%)
N	22
AE	
Transient hypotension	8 (36.4)
Fever	6 (27.2)
Palpitation	5 (22.7)
Skin rash	4 (18.2)
Nausea	1 (4.5)
Hypersensitivity syndrome	1 (4.5)
Hyperthyroidism	1 (4.5)
SAE	
Femoral neck fracture	1 (4.5)
Obstructive ileus	1 (4.5)
Renal cyst infection	1 (4.5)
Discontinuation of treatment due to AE	10 (45.5)

ORIGINAL ARTICLE

3 OPEN ACCESS



Abaloparatide in patients with mild or moderate renal impairment: results from the ACTIVE phase 3 trial


John P. Bilezikian^a, Gary Hattersley^b, Bruce H. Mitlak^b, Ming-Yi Hu^b, Lorraine A. Fitzpatrick^b, Christine Dabrowski^b, Paul D. Miller^c and Socrates E. Papapoulos^d

^aCollege of Physicians and Surgeons, Columbia University, New York, NY, USA; ^bResearch & Development, Radius Health, Inc, Waltham, MA, USA; ^cColorado Center for Bone Research at Panorama Orthopedics and Spine Center, Golden, CO, USA; ^dCenter for Bone Quality, Leiden University Medical Center, Leiden, The Netherlands

BMD changes in patients treated with Teriparatide based on renal function

BMD changes in patients treated with abaloparatide based on renal function

Conclusions

- ❖ No differences in efficacy or safety of abaloparatide among patients with different degrees of baseline renal function.
- ❖ The findings support the use of abaloparatide in patients with mild or moderate renal impairment without dose adjustments.
- Abaloparatide is particularly suitable as an osteoanabolic agent to treat patients at high risk for fracture with impaired renal function.

Contents lists available at ScienceDirect

Bone

Full Length Article

Effects of abaloparatide-SC (BA058) on bone histology and histomorphometry: The ACTIVE phase 3 trial*

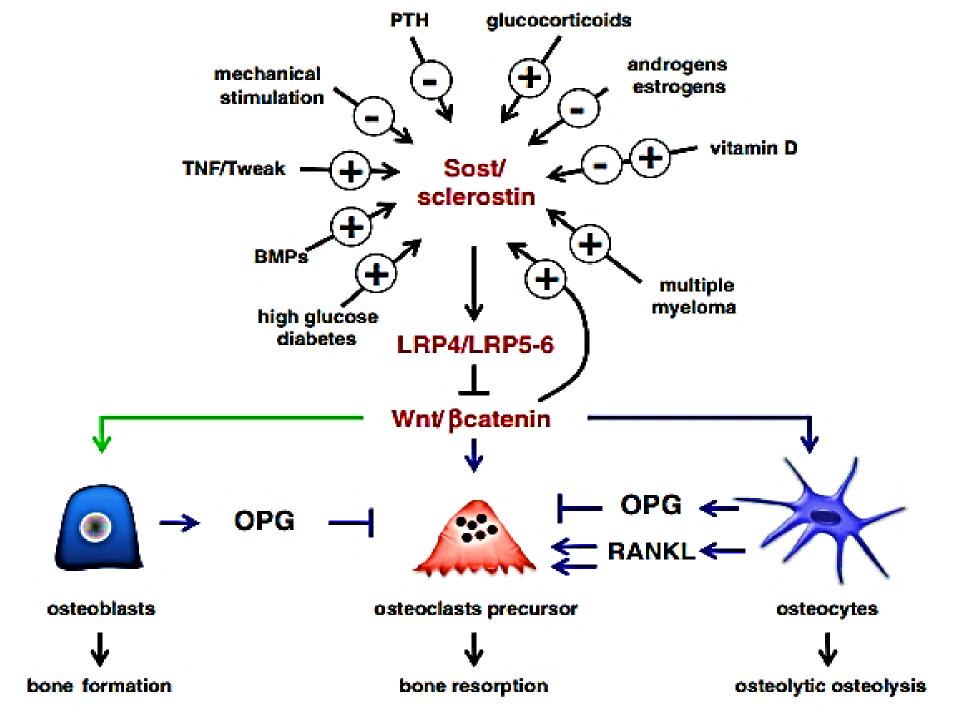
Table 3Bone mineral density at lumbar spine, femoral neck, and total hip at 18 months in the bone biopsy cohort.

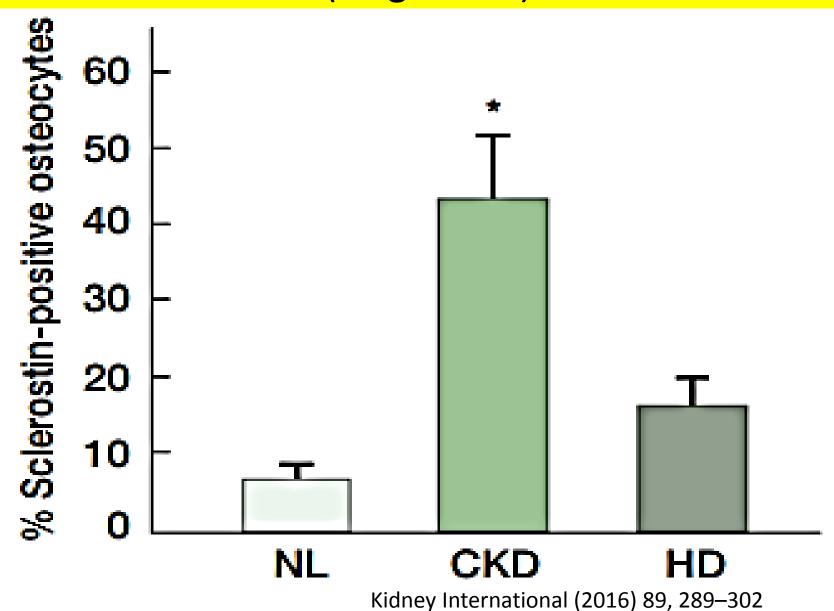
	Placebo (n=35)		Abaloparatide-SC (n=36)		Teriparatide (n=34)	
	Value (g/cm²)	% change from BL	Value (g/cm²)	% change from BL	Value(g/cm²)	% change from BL
LS-BMD	0.855 (0.136)	0.49 (4.72)	0.960 (0.139)	12.45 (7.95) ^{a,b}	0.943 (0.126)	9.70 (5.05) ^a
FN-BMD	0.747	-0.49	0.760	4.75	0.788	3.02
TH-BMD	(0.101) 0.785 (0.096)	(3.63) -0.42 (2.41)	(0.108) 0.802 (0.093)	(4.44) ^a 4.40 (3.98) ^a	(0.086) 0.826 (0.087)	(3.64) ^a 3.10 (3.95) ^a

BL=baseline; BMD=bone mineral density; LS=lumbar spine; FN=femoral neck; TH=total hip. Values are expressed as the mean (SD); a p<0.0001 vs placebo. b p=0.0054 vs teriparatide.

Osteoporosis Drugs in Advanced CKD

Drug	Trials in eGFR < 45 (No. of Patients)	Trials in Dialysis Patients (No. of Patients)	Suggested Dosing Options	Side Effects	Efficacy
Antiresorptive					
Bisphosphonates	Yes (59-581)	Yes (ongoing)	(1) Oral alendronate35 mg, weekly(2) IV pamidronate 60 mg, every other month	Hypocalcemia, AKI, eGFR decline, osteonecrosis	Benefits seen in CKD3; data lacking in CKD4 and dialysis
RANK ligand inhibitor	Yes (55)	Yes (8-12)	SC denosumab, 60 mg, ×1	Hypocalcemia (severe), rebound osteoclast activity	Efficacy seen in dialysis in observational studies
Hormonal	Yes (51-970)	Yes (50)	Oral raloxifene, 60 mg, daily	Minimal adverse events, thrombosis risk (theoretical)	Efficacy seen in RCTs in CKD and dialysis
Anabolic					
PTH analogues	Yes (168-736)	Yes (7)	(1) SC teriparatide, 20 µg, daily(2) SC abaloparatide, 80 µg, daily	Hypercalcemia, nausea, URI	Efficacy in CKD, unclear in dialysis
Mixed					
Antisclerostin antibody	Yes (430)	Yes (12)	Romosozumab, 210 mg, monthly	CVD, hypocalcemia, arthralgias	Efficacy in CKD, unclear in dialysis




Table 1. Factors Involved in the Bone-Vascular Axis in CKD (Nonexhaustive)

Factor	Role in Bone Metabolism	Role in Vascular Calcification	
Inflammation	Promotes bone resorption	Promotes VC	
Klotho	Acts as a Wnt-inhibitor; in addition may modify mineral metabolism	Inhibits VC	
Sclerostin (Wnt-inhibitor)	Inhibits bone turnover	Marker of VC burden; attenuates	
		progression of VC	
Osteoprotegerin	Inhibits osteoclastic bone resorption	Marker of VC burden; inhibits VC	
Vitamin K deficiency	Reduces bone mineral density	Promotes vascular calcification	
PTH	Key mediator of bone turnover; effect is dependent on duration and periodicity of PTH exposure and skeletal responsiveness	Complex, composite of incongruent paracrine and systemic effects	
BMPs	Induce osteoblastic differentiation and bone formation	Proinflammatory and pro-oxidant effects	
Osteopontin	Activates osteoclasts	Inhibits vascular calcification	
Vitamin D	Maintains bone mass, pending sufficient calcium supply	Complex, U-shaped relationship	

Sclerostin deficiency > Van Buchem disease

Increase in osteocyte sclerostin expression in early CKD (stages 2–4).

Determinants of Sclerostin expression Determinant Impact Mechanism

Age	T	 Reduction of daily activity. Decreased osteocyte number
PTH	-	Direct action of PTH promoting Wnt-B catenin pathway Direct impact on osteoblast differentiation
Phosphorus	+	Through increased FGF 23 Changes on the sclerostin expression gen

Calcitriol

Estrogens

Diabetes

+

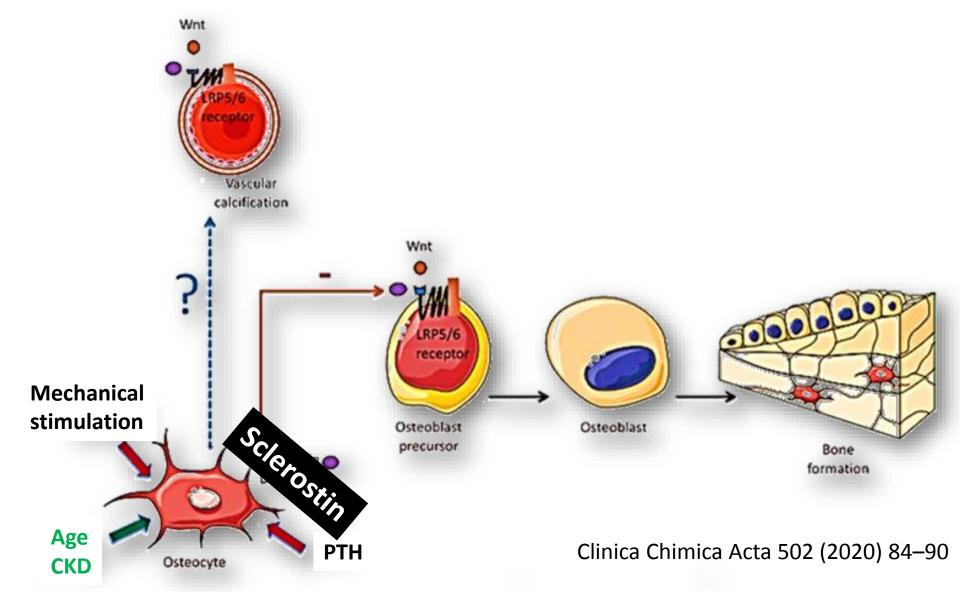
A Poduction of daily activity

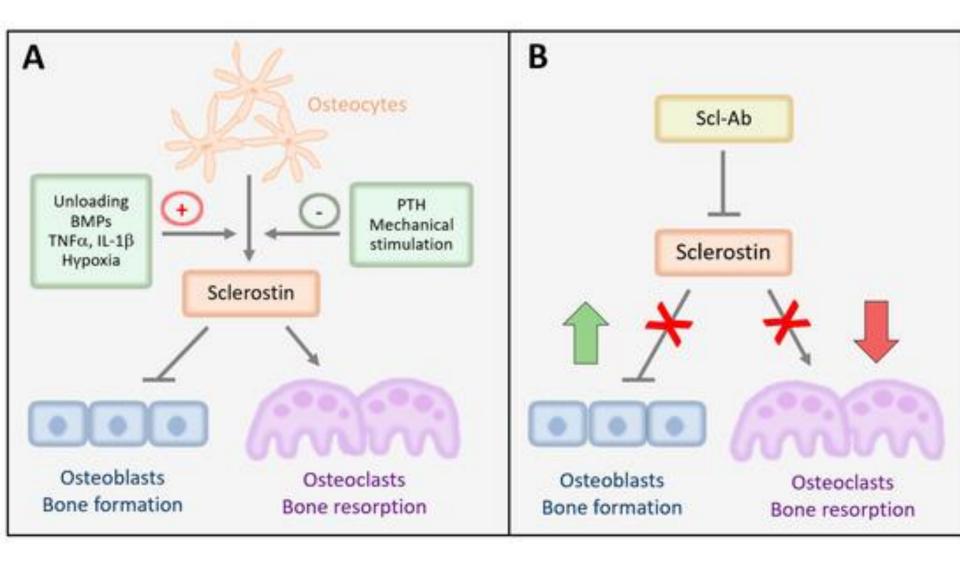
Decreased activation of 1-alpha Hydroxylase

Increased TNF-a → increased sclerostin

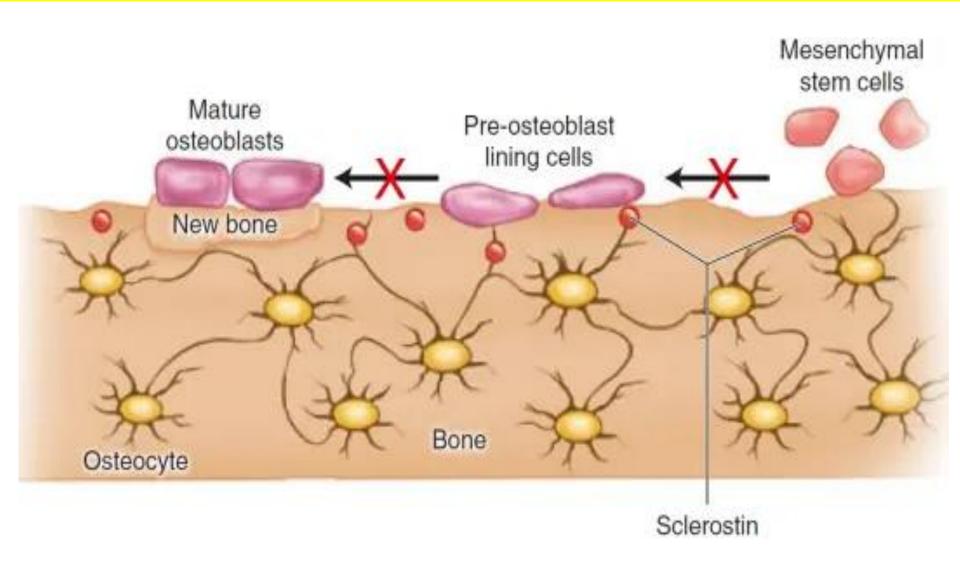
Wnt–β-catenin pathway implicated in

Role in Wnt signaling in hepatic glucose


Clinica Chimica Acta 502 (2020) 84–90


pancreatic islet development and the

production of incretin hormone


metabolism

Sclerostin: regulation, bone effect, and link with vascular calcifications

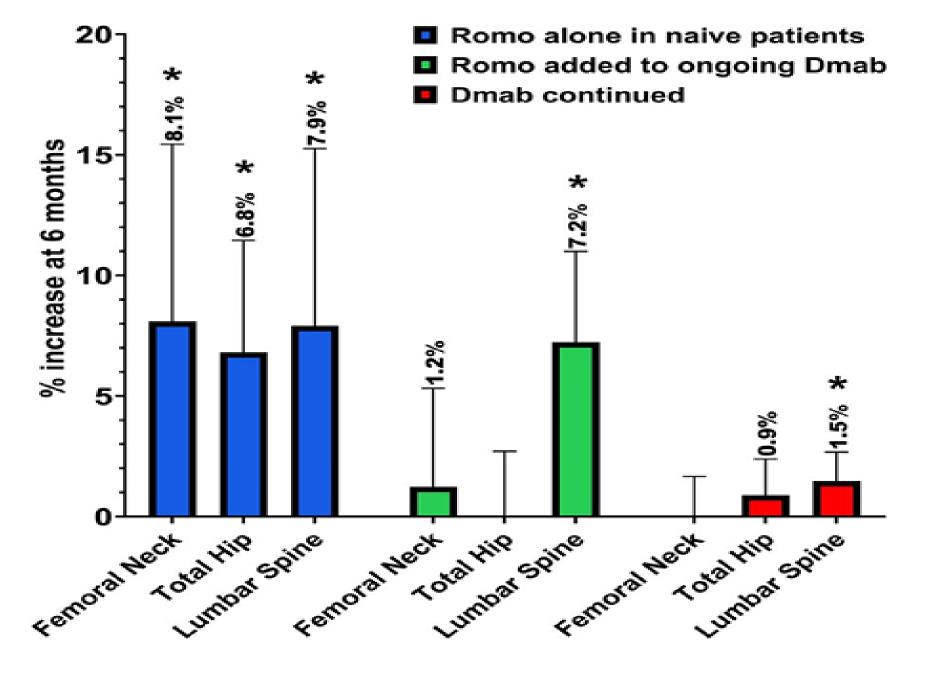
Osteocytes producing sclerostin inhibits bone formation.

Concerns about Romosozumab

- It is a fully human monoclonal anti sclerostin antibody with concurrent anabolic and antiresorptive action, activates bone formation.
- Anti-sclerostin antibodies may be a beneficial therapeutic option in patients with G4–G5D CKD and low bone turn over
- this therapy can have synergistic action with PTH analogs
- the BMD increase was higher with romosozumab compared with alendronate or teriparatide.
- switching from a bisphosphonate to romosozumab led to a higher increase of cortical rather than trabecular BMD in patients with CKD. Whereas patients switched from a bisphosphonate to teriparatide, the cortical BMD decreased.
- The bone turnover rebound phenomenon and bone loss have been observed after romosozumab cessation necessitating the rapid transition to an antiresorptive treatment.
- Romosozumab is associated with cardiovascular adverse events

Advance access publication: February 7, 2024

Research Article



Romosozumab added to ongoing denosumab in postmenopausal osteoporosis, a prospective observational study

Giovanni Adami*, Elisa Pedrollo, Maurizio Rossini, Angelo Fassio, Vania Braga, Emma Pasetto, Francesco Pollastri, Camilla Benini, Ombretta Viapiana, Davide Gatti

Rheumatology Unit, Department of Medicine, University of Verona, Verona, 37134, Italy

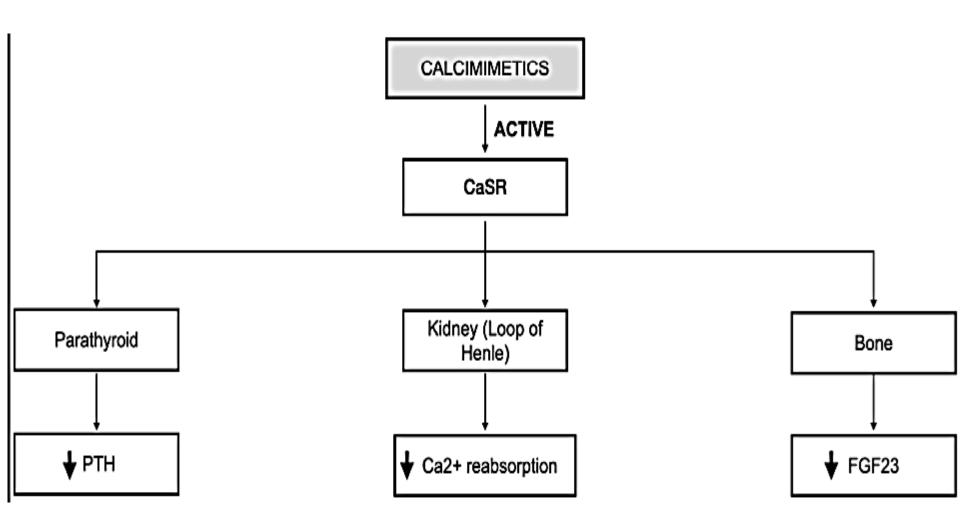
*Corresponding author: Giovanni Adami, Rheumatology Unit, Department of Medicine, University of Verona, P.le Scuro 10, Verona, 37134, Italy (giovanni.adami@univr.it).

Discontinuation of long-term treatment with denosumab

Discontinuation of long-term treatment with Biphosphonate

BMD declines slowly

Discontinuation of long-term treatment with Teriparatide


Discontinuation of long-term treatment with Romosozumab

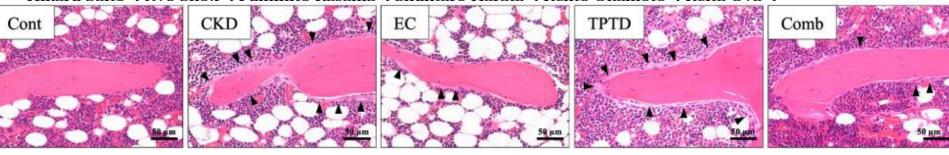
What about of Combo treatment of Calcimimetics+ Teriparatide?

Action of calcimimetics on the main target organs of the body

Contents lists available at ScienceDirect

Osteoporosis and Sarcopenia

journal homepage: www.elsevier.com/locate/afos



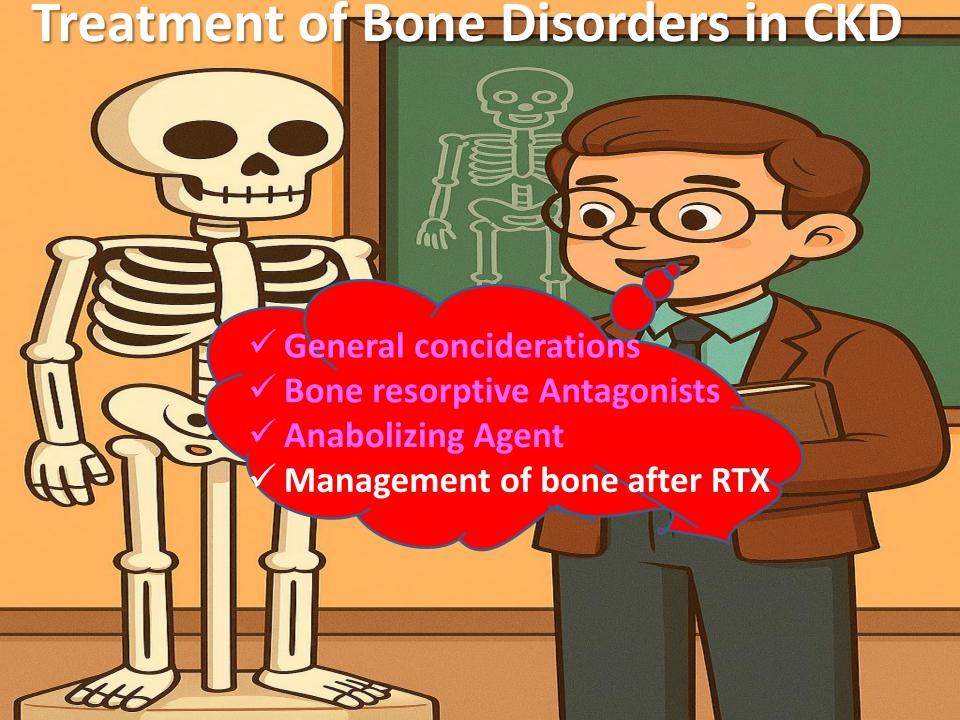
Original article

Teriparatide and etelcalcetide improve bone, fibrosis, and fat parameters in chronic kidney disease model rats

Shun Igarashi ^a, Yuji Kasukawa ^{b, *}, Koji Nozaka ^a, Hiroyuki Tsuchie ^a, Kazunobu Abe ^a, Hikaru Saito ^a, Ryo Shoji ^a, Fumihito Kasama ^a, Shuntaro Harata ^a, Kento Okamoto ^a, Keita Oya ^a,

Combination therapy provides a beneficial effect in improving bone deterioration in CKD that cannot be achieved with monotherapy

Chronic kidney disease-mineral and bone disorder: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference



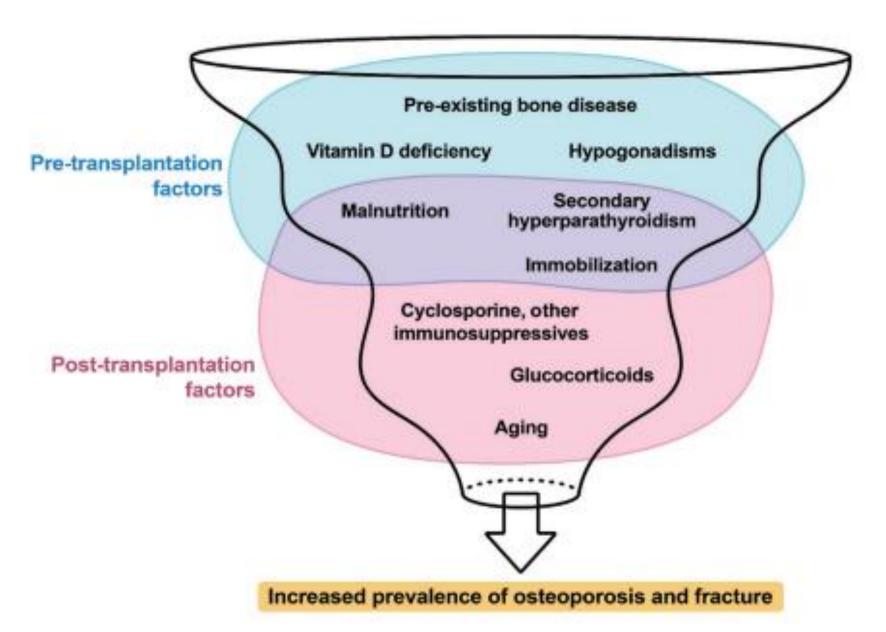
OPEN

Markus Ketteler¹, Pieter Evenepoel^{2,3}, Rachel M. Holden⁴, Tamara Isakova⁵, Hanne Skou Jørgensen^{6,7}, Hirotaka Komaba⁸, Thomas L. Nickolas⁹, Smeeta Sinha^{10,11}, Marc G. Vervloet¹², Michael Cheung¹³, Jennifer M. King¹³, Morgan E. Grams¹⁴, Michel Jadoul¹⁵ and Rosa M.A. Moysés¹⁶; for Conference Participants¹⁷

Conclusion

The use of artificial intelligence systems could aid in predicting risks and informing management strategies in CKD-MBD.

Endocrinol Metab 2024;39:267-282



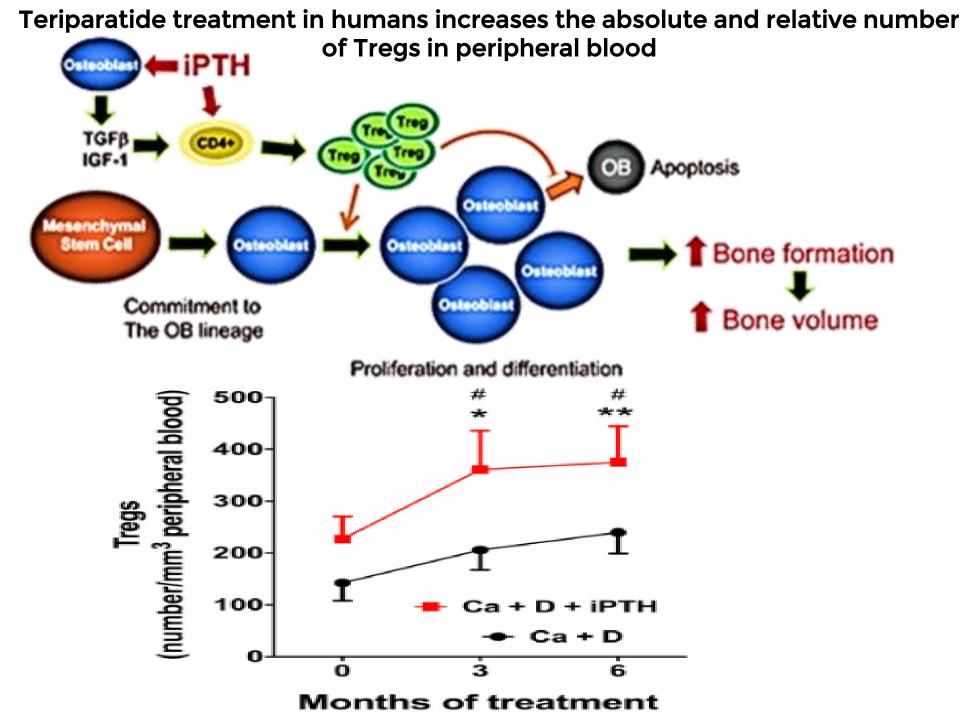
Endocrinol Metab 2024;39:267-282 https://doi.org/10.3803/EnM.2024.1939 pISSN 2093-596X | cISSN 2093-5978

Bone Loss after Solid Organ Transplantation: A Review of Organ-Specific Considerations

Once town loss time	After transplantation			
Organ transplant type	Prevalence of osteoporosis	Prevalence of fracture	Bone loss in the first year	
Kidney	Lumbar spine: 17%–49% Femur neck: 11%–56% Radius: 22%–52%	Overall: 7%-44%	Lumbar spine: 4%–10% Femur neck: 5%–8%	
Liver	Overall: 46%	Fracture rate: 24%-65%	Lumbar spine: 2%-24%	
Heart	Overall: 50%	Vertebral fracture: 33%-36%	Lumbar spine: 6%–10% Femur neck: 6%–11%	
Lung	Overall: 73%	Fracture rate: 18%-37%	Lumbar spine & Femur neck: 2%-5%	

Pathophysiology of transplantation-induced osteoporosis

Effects of Immunosuppressive Drug on Bone in Transplant Patients


Drug type	Key mechanisms	Net effect on bone
Glucocorticoids	Inhibit osteoblasts Stimulate osteoclasts Disrupt intestinal and renal calcium transport Decreased gonadal function	Early: increased bone resorption Late: decreased bone formation and remodeling
Calcineurin inhibitors (cyclosporine, tacrolimus)	Inhibit cytokine transcription in T lymphocytes	Less bone loss compared to glucocorticoids, variable effects on bone turnover
mTOR inhibitors (sirolimus, everolimus)	Inhibit mTOR, affecting lymphocyte response	Potential reduction in bone resorption, bone-protective effects observed in some studies
Others (MPA, azathioprine)	Inhibit lymphocyte proliferation and antibody production (MPA); antagonize purine metabolism (Azathioprine)	Indirect protective effect on bone health by reducing the need for glucocorticoids, but specific effects on bone less clear

Regulatory T cells are expanded by Teriparatide treatment in humans and mediate intermittent PTH-induced bone anabolism in mice

Mingcan Yu¹, Patrizia D'Amelio², Abdul Malik Tyagi¹, Chiara Vaccaro¹, Jau-Yi Li¹, Emory Hsu¹, Ilaria Buondonno², Francesca Sassi², Jonathan Adams¹, M Neale Weitzmann^{1,3}, Richard DiPaolo⁴ & Roberto Pacifici^{1,5,*}

Management of bone health in post-transplant patient

Solid Organ Transplant Recipient

- +
- ❖ Adequate daily Ca: 800-1000mg
- ❖ Maintain serum vit D3>20-30 ng/ml by calcitriol
- Encourage in physical activity

- Bone evaluation pre-transplantation
- Measure BMD 6 mo. after transplantation
- Monitoring biochemical tests frequently:Ca,P, ALP, VitD3, PTH

Initiate drugs in the case of osteoporosis with:

- Oral bisphosphonate or IV bisphosphonate (Especially Zolendronic acid)
- Denozumab
- Calcitriol

Endocrinol Metab 2024;39:267-282

Conclusion

- ☐ Teriparatide is safe and effective in increasing BMD and bone formation in patients with severe CKD, with no new safety concerns observed.
- ☐ The use of antiresorptive medications should be carefully evaluated, with close monitoring for potential nephrotoxicity and hypocalcemia.
- ☐ Emerging therapies such as romosozumab show promise but come with cardiovascular risks, necessitating careful consideration.
- ☐ Anabolic agents must be followed with anti-resorptive agents

